MCP Sigil Resolver Server — Design Proposal

Background
Sigils are currently resolved inside the Django application through core.sigil_resolver, which inspects the SigilR

The product roadmap calls for exposing the same capabilities outside of Django via OpenAl's Model Context Pr

Goals
* Provide an MCP-compliant server that exposes the existing resolution logic without duplicating business rule
* Enable secure remote resolution for arbitrary text with nested sigils as well as utility discovery (e.g., which ro
» Support opt-in per-session context (current user, current entity instances) so downstream agents can resolve
» Keep the gway fallback so existing external integrations remain functional, but make it optional when MCP ac

Non-Goals
* Replacing the in-process Django resolver.
« Offering arbitrary database access beyond the existing sigil semantics.
* Shipping a production-grade authentication service; the first version will rely on API keys and reverse proxies

Protocol Surface

The server will expose the following MCP constructs:

* Tool — resolveSigils: Resolve one or more sigils inside a text payload using the current session context.
* Tool — resolveSingle: Resolve a single sigil token and return its value or unresolved form.

» Tool — describeSigilRoot: Provide metadata for a given sigil root leveraging Sigil Builder data.

» Tool — setContext: Update the thread-local sigil context to mimic request-derived state.

» Resource - sigilRoots: Publish changes to SigilRoot objects so sessions can react without polling.

Server Architecture
manage.py mcp_sigil_server
mmm SigilResolverServer (mcp.server.sse.SseServer)

m mm SigilSessionState (per-connection context)
m manm SigilContextAdapter - core.sigil_context
mmm SigilResolverService
m mmm uses core.sigil_resolver.resolve_sigils
mmm SigilRootCatalog (queries SigilRoot + caches metadata)

Entry point — New Django management command mcp_sigil_server imports django.setup(), instantiates an Sse
Session state — accept_session captures authentication headers, initializes SigilSessionState, and logs unresol
Resolver service — Wrap resolve_sigils, applying session context before each call and checking metadata for ur
Sigil root catalog — Cache describeSigilRoot metadata by reusing core.sigil_builder queries.

Gway integration — Keep _resolve_with_gway untouched so the fallback path remains intact.

Configuration & Security

Dependencies — Add modelcontextprotocol to requirements and provide shared schemas in core/mcp.
Settings — Introduce settings.MCP_SIGIL_SERVER with host, port, and api_key plus a --public override.
Authentication — Require Authorization: Bearer tokens that match settings.MCP_SIGIL_API_KEYS.
Rate limiting — Enforce per-session throttles and expand to Redis-backed limits later if needed.

Implementation Plan
Foundations — Add core/mcp modules and implement SigilResolverService.
MCP server — Connect the service to the SseServer and expose tools/resources.



Admin & Ops — Document provisioning steps and extend deployment scripts.
Testing — Add unit and integration coverage, including context-aware fixtures.

Operational Considerations

Observability — Emit structured logs and metrics.

Error handling — Map validation errors to MCP ToolError responses.

Scalability — Run the MCP server alongside Django to avoid mismatched configuration.

Future Enhancements

* Add prompt registrations for sigil-building instructions.
» Support MCP jobs for long-running resolution tasks once available.
* Replace the gway fallback with a dedicated MCP proxy tool.



