
MCP Sigil Resolver Server – Design Proposal

Background
Sigils are currently resolved inside the Django application through core.sigil_resolver, which inspects the SigilRoot configuration, looks up model instances, and falls back to a gway subprocess for unknown roots. The resolver supports nested sigils, dynamic model lookups, environment variables, and per-thread context provided through core.sigil_context. Sigil metadata is surfaced in the admin via the Sigil Builder view, which lists known roots and lets administrators experiment with resolution.

The product roadmap calls for exposing the same capabilities outside of Django via OpenAI's Model Context Protocol (MCP) so connectors can resolve sigils over SSE.

Goals
 • Provide an MCP-compliant server that exposes the existing resolution logic without duplicating business rules.
 • Enable secure remote resolution for arbitrary text with nested sigils as well as utility discovery (e.g., which roots exist).
 • Support opt-in per-session context (current user, current entity instances) so downstream agents can resolve contextual sigils accurately.
 • Keep the gway fallback so existing external integrations remain functional, but make it optional when MCP adoption is complete.

Non-Goals
 • Replacing the in-process Django resolver.
 • Offering arbitrary database access beyond the existing sigil semantics.
 • Shipping a production-grade authentication service; the first version will rely on API keys and reverse proxies.

Protocol Surface
The server will expose the following MCP constructs:
• Tool – resolveSigils: Resolve one or more sigils inside a text payload using the current session context.
• Tool – resolveSingle: Resolve a single sigil token and return its value or unresolved form.
• Tool – describeSigilRoot: Provide metadata for a given sigil root leveraging Sigil Builder data.
• Tool – setContext: Update the thread-local sigil context to mimic request-derived state.
• Resource – sigilRoots: Publish changes to SigilRoot objects so sessions can react without polling.

Server Architecture
manage.py mcp_sigil_server
 ■■■ SigilResolverServer (mcp.server.sse.SseServer)
 ■■■ SigilSessionState (per-connection context)
 ■ ■■■ SigilContextAdapter ↔ core.sigil_context
 ■■■ SigilResolverService
 ■ ■■■ uses core.sigil_resolver.resolve_sigils
 ■■■ SigilRootCatalog (queries SigilRoot + caches metadata)

Entry point – New Django management command mcp_sigil_server imports django.setup(), instantiates an SseServer, and listens on 127.0.0.1:8800.
Session state – accept_session captures authentication headers, initializes SigilSessionState, and logs unresolved sigils.
Resolver service – Wrap resolve_sigils, applying session context before each call and checking metadata for unresolved tokens.
Sigil root catalog – Cache describeSigilRoot metadata by reusing core.sigil_builder queries.
Gway integration – Keep _resolve_with_gway untouched so the fallback path remains intact.

Configuration & Security
Dependencies – Add modelcontextprotocol to requirements and provide shared schemas in core/mcp.
Settings – Introduce settings.MCP_SIGIL_SERVER with host, port, and api_key plus a --public override.
Authentication – Require Authorization: Bearer tokens that match settings.MCP_SIGIL_API_KEYS.
Rate limiting – Enforce per-session throttles and expand to Redis-backed limits later if needed.

Implementation Plan
Foundations – Add core/mcp modules and implement SigilResolverService.
MCP server – Connect the service to the SseServer and expose tools/resources.

Admin & Ops – Document provisioning steps and extend deployment scripts.
Testing – Add unit and integration coverage, including context-aware fixtures.

Operational Considerations
Observability – Emit structured logs and metrics.
Error handling – Map validation errors to MCP ToolError responses.
Scalability – Run the MCP server alongside Django to avoid mismatched configuration.

Future Enhancements
 • Add prompt registrations for sigil-building instructions.
 • Support MCP jobs for long-running resolution tasks once available.
 • Replace the gway fallback with a dedicated MCP proxy tool.

